> Linear Algebra
> [KOMS119602]-2022/2023

12.3 - Properties of Linear Transformation

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 13 (December 2022)

Learning objectives

After this lecture, you should be able to:

1. explain various properties of each of linear transformations in a vector space.

Properties of Matrix Transformations

(page 270 of Elementary LA Applications book)

Compositions of matrix transformation

Let:

- T_{A} : a matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{k}
- T_{B} : a matrix transformation from \mathbb{R}^{k} to \mathbb{R}^{m}

Let $\mathbf{x} \in \mathbb{R}^{n}$, and defines transformation:

$$
\mathbf{x} \xrightarrow{T_{A}} T_{A}(\mathbf{x}) \xrightarrow{T_{B}} T_{B}\left(T_{A}(\mathbf{x})\right)
$$

defines the transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.
It is called the composition of T_{B} with T_{A} and is denoted by $T_{B} \circ T_{A}$. So:

$$
\left(T_{B} \circ T_{A}\right)(\mathbf{x})=T_{B}\left(T_{A}(\mathbf{x})\right)
$$

Compositions of matrix transformation

The composition is a matrix transformation, since:

$$
\left(T_{B} \circ T_{A}\right)(\mathbf{x})=T_{B}\left(T_{A}(\mathbf{x})\right)=B\left(T_{A}(\mathbf{x})\right)=B(A \mathbf{x})=(B A) \mathbf{x}
$$

meaning that the result of the composition to x is obtained by multiplying \mathbf{x} with $B A$ on the left.

This is denoted by:

$$
T_{B} \circ T_{A}=T_{B A}
$$

Composition of three transformations

Compositions can be defined for any finite succession of matrix transformations whose domains and ranges have the appropriate dimensions. For instance, given:

$$
T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, T_{B}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}, T_{C}: \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}
$$

we can define the composition:

$$
\left(T_{C} \circ T_{B} \circ T_{A}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

by:

$$
\left(T_{C} \circ T_{B} \circ T_{A}\right)(\mathbf{x})=T_{C}\left(T_{B}\left(T_{A}(\mathbf{x})\right)\right)
$$

It can be shown that this is a matrix transformation with standard matrix CBA, and:

$$
T_{C} \circ T_{B} \circ T_{A}=T_{C B A}
$$

Notation

We can write the standard matrix for transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ without specifying the name of the standard matrix.

It is often written as $[T]$.
For instance,

- $T(\mathbf{x})=[T] \mathbf{x}$
- $\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]$
- $\left[T_{3} \circ T_{2} \circ T_{1}\right]=\left[T_{3}\right]\left[T_{2}\right]\left[T_{1}\right]$

Composition is not commutative

Example

Let:

- $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection about the line $y=x$;
- $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the orthogonal projection onto the y-axis.

$T_{2} \circ T_{1}$

$T_{1} \circ T_{2}$

Geometrically, both transformations have different effect on \mathbf{x}

Composition is not commutative (cont.)

Algebraically, we can compute:

$$
\begin{aligned}
& {\left[T_{1} \circ T_{2}\right]=\left[T_{1}\right]\left[T_{2}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]} \\
& {\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]}
\end{aligned}
$$

Clearly, $\left[T_{1} \circ T_{2}\right] \neq\left[T_{2} \circ T_{1}\right]$.

Composition of rotation is commutative

Example

Given :

$$
T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { and } T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix operators that rotate vectors about the origin through the angles θ_{1} and θ_{2} respectively.

So, the operation:

$$
T_{2} \circ T_{1}(\mathbf{x})=T_{2}\left(T_{1}(\mathbf{x})\right)
$$

first rotates x through the angle θ_{1}, then rotates $T_{1}(\mathbf{x})$ through the angle θ_{2}. Hence, $\left(T_{2} \circ T_{1}\right)(\mathrm{x})$ defines rotation of x through the angle $\theta_{1}+\theta_{2}$.

Composition of rotation is commutative (cont.)

In this case, we have:

$$
\left[T_{1}\right]=\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right] \text { and }\left[T_{2}\right]=\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]
$$

We show that: $\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]$

$$
\text { Note that }\left[T_{2} \circ T_{1}\right]=\left[\begin{array}{cc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]
$$

Furthermore:

$$
\begin{aligned}
{\left[\boldsymbol{T}_{2}\right]\left[\boldsymbol{T}_{1}\right] } & =\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta_{2} \cos \theta_{1}-\sin \theta_{2} \sin \theta_{1} & -\left(\cos \theta_{2} \sin \theta_{1}+\sin \theta_{2} \cos \theta_{1}\right) \\
\sin \theta_{2} \cos \theta_{1}+\cos \theta_{2} \sin \theta_{1} & -\sin \theta_{2} \sin \theta_{1}+\cos \theta_{2} \cos \theta_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left.T_{2} \circ T_{1}\right]
\end{array}\right.
\end{aligned}
$$

It can be easily seen that $\left[T_{2} \circ T_{1}\right]=\left[T_{1} \circ T_{2}\right]$ (hence, commutative).

Exercise

Read Example 3 and Example 4 (page 272-273)

One-to-one matrix transformation

A matrix transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one if T_{A} maps distinct vectors (points) in \mathbb{R}^{n} into distinct vectors (points) in \mathbb{R}^{m}.

Equivalent statements:

- T_{A} is one-to-one if $\forall \mathbf{b}$ in the range of A, there is exactly one vector $\mathbf{x} \in \mathbb{R}^{n}$, s.t. $T_{A} \mathbf{x}=\mathbf{b}$.
- T_{A} is one-to-one if the equality $T_{A}(\mathbf{u})=T_{A}(\mathbf{v})$ implies that $\mathbf{u}=\mathbf{v}$.

Examples: one-to-one and not one-to-one transformations

Rotation operators on \mathbb{R}^{2} are one-to-one.
since distinct vectors that are rotated through the same angle have distinct images.

The orthogonal projection of \mathbb{R}^{2} onto the x-axis is not one-to-one. since it maps distinct points on the same vertical line into the same point.

\triangle Figure 4.10.6 Distinct vectors \mathbf{u} and \mathbf{v} are rotated into distinct vectors $T(\mathbf{u})$ and $T(\mathbf{v})$.

\triangle Figure 4.10.7 The distinct points P and Q are mapped into the same point M.

Kernel and range

If $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation, then the set of all vectors in $R R^{n}$ that T_{A} maps into 0 is called the kernel of T_{A} and is denoted by $\operatorname{ker}\left(T_{A}\right)$, i.e.:

$$
\operatorname{ker}\left(T_{A}\right)=\left\{\mathbf{x} \in \mathbb{R}^{n} \text { s.t. } A \mathbf{x}=\mathbf{0}\right\}
$$

The set of all vectors in \mathbb{R}^{m} that are images under this transformation of at least one vector in \mathbb{R}^{n} is called the range of T_{A} and is denoted by $R\left(T_{A}\right)$, i.e.:

$$
R\left(T_{A}\right)=\left\{\mathbf{b} \in \mathbb{R}^{m} \text { s.t. } \exists \mathbf{x} \in \mathbb{R}^{n}, \text { where } A \mathbf{x}=\mathbf{b}\right\}
$$

In brief:

$$
\begin{array}{r}
\operatorname{ker}\left(T_{A}\right)=\text { null space of } A \\
R\left(T_{A}\right)=\text { column space of } A
\end{array}
$$

Matrix - linear system - transformation

Let A be an $(m \times n)$ matrix.
Three ways of viewing the same subspace of \mathbb{R}^{n} :

- Matrix view: the null space of A
- System view: the solution space of $A \mathbf{x}=0$
- Transformation view: the kernel of T_{A}

Three ways of viewing the same subspace of \mathbb{R}^{m} :

- Matrix view: the column space of A
- System view: all $\mathbf{b} \in \mathbb{R}^{m}$ for which $A \mathbf{x}=\mathbf{b}$ is consistent
- Transformation view: the range of T_{A}

Exercise

Read Example 5 and Example 6 on page 275.

One-to-one matrix operator

Let $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a one-to-one matrix operator. So, A is invertible.
The inverse operator or the inverse of T_{A} is defined as:

$$
T_{A^{-1}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

In this case:
$T_{A}\left(T_{A^{-1}}(\mathbf{x})\right)=A A^{-1} \mathbf{x}=/ \mathbf{x}=\mathbf{x}$ or, equivalently $T_{A} \circ T_{A^{-1}}=T_{A A^{-1}}=T_{I}$ $T_{A^{-1}}\left(T_{A}(\mathbf{x})\right)=A^{-1} A \mathbf{x}=I \mathbf{x}=\mathbf{x}$ or, equivalently $T_{A^{-1}} \circ T_{A}=T_{A^{-1} A}=T_{I}$

T_{A} maps \mathbf{x} to \mathbf{w} and $T_{A^{-1}}$ maps \mathbf{w} back to \mathbf{x}, i.e., $T_{A^{-1}}(\mathbf{w})=T_{A^{-1}}\left(T_{A}(\mathbf{x})\right)=\mathbf{x}$

Exercise

Read Example 7 and Example 8 on page 276.

Conclusion

THEOREM 4.10.2 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) A is invertible.
(b) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(c) The reduced row echelon form of A is I_{n}.
(d) A is expressible as a product of elementary matrices.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}.
(g) $\operatorname{det}(A) \neq 0$.
(h) The column vectors of A are linearly independent.
(i) The row vectors of A are linearly independent.
(j) The column vectors of A span R^{n}.
(k) The row vectors of A span R^{n}.
(l) The column vectors of A form a basis for R^{n}.
(m) The row vectors of A form a basis for R^{n}.
(n) A has rank n.
(o) A has nullity 0 .
(p) The orthogonal complement of the null space of A is R^{n}.
(q) The orthogonal complement of the row space of A is $\{0\}$.
(r) The kernel of T_{A} is $\{\mathbf{0}\}$.
(s) The range of T_{A} is R^{n}.
(t) T_{A} is one-to-one.

Geometry of Matrix Operators on \mathbb{R}^{2}

(page 280 of Elementary LA Applications book)

to be continued...

Unit square

Unit square rotated

Unit square reflected about the y-axis

Unit square reflected about the line $y=x$

Exercise

Given a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is multiplication by an invertible matrix. Determine the image of:

1. A straight line
2. A line through the origin
3. Parallel lines
4. The line segment joining points P and Q
5. Three points lie on a line

Task:

Divide yourselves into 5 groups, and examine each of the question!

Exercises

Question 1

Given a transformation matrix:

$$
A=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]
$$

Find the image of line $y=2 x+1$ under the transformation.
Question 2
Given a transformation matrix:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]
$$

Find the image of the unit square on the first quadrant under the transformation.

Exercises

Determine the image of the unit square under the following transformation:

- Reflection about the y-axis
- Reflection about the x-axis
- Reflection about the line $y=x$
- Rotation about the origin through a positive angle θ
- Compression in the x-direction with factor k with $0<k<1$
- Compression in the y-direction with factor k with $0<k<1$
- Expansion in the x-direction with factor k with $k>1$
- Expansion in the y-direction with factor k with $k>1$
- Shear in the x-direction with factor k with $k>0$
- Shear in the x-direction with factor k with $k<0$
- Shear in the y-direction with factor k with $k>0$
- Shear in the y-direction with factor k with $k<0$

This is the end of slide...

